
Machine Learning Algorithms
for Business Decisions

O. Stanciu, A.Cojocariu
*”Tibiscus” University of Timişoara, Faculty of Economic Science, Timişoara, Romania

ofelia.stanciu@gmail.com, a_cojocariu@yahoo.com

Abstract - This paper presents most often used machine
learning algorithms for business decisions support. Machine
Learning algorithms, particularly decision tree generating
algorithms and reinforcement learning algorithms can be
applied upon data stored using XML technologies, in order
to support business decisions.

I. INTRODUCTION

The management and use of information, as an
essential resource of a company, acquires new
particularities deriving from its use in supporting
decisions and from the continuous growth of the
complexity of the decision process.

The decision process is a an assemble of activities
driven by only one or several individuals facing an event
that generates more than one acting direction, following
the optimal direction, according to the value system of
the decision makers.

This paper presents most often used machine learning
algorithms that are used for business decision support.

II. DECISION TREES

Decision trees are an easy applicable for classification

and prediction, the result being presented in a tree form
with automatically set logic rules hierarchy by exploring a
set of examples. The examples are similar to records with
several attributes and the rules are being established by a
detailed dividing of the assemble of examples, depending
on the content of the attributes.

Building the decision tree begins from its root, which
shows the available examples. The initial assemble is
divided into intermediary nodes. Each node is being
evaluated and is divided in other nodes if possible, until
the terminal undividable nodes are found. When
effectively processing data, the attributes are grouped in
two categories: dependent and independent attributes.
There is only one dependent attribute, also named target
attribute, onto which we are searching for influences from
the other attributes, the independent ones. From all the
independent attributes we select the one that has the most
powerful impact on the target field, the one that eventually
supports the division of the record assembly into the most
relevant sub-assemblies. For each of these subdivisions
we re-perform the analysis, using the same target field but
considering only the attributes that were left out in the
previous steps, and seeking for new subdivisions.

After the tree construction, the new data can be
included, at some amount of certainty, into one of the leaf

nodes, depending on their attributes values, classifying
them or being able to perform predictions regarding them.

III. DEVELOPMENT OF DECISION TREES
One of the most popular methods used in developing

decision trees is CART (Classification and Regression
Trees). This one starts with seeking out the independent
variable which has values that allow the best division to
take place. For this we move on to calculating a diversity
index for the whole record assembly given an attribute.
The procedure describes the parse of the independent
attributes one by one and the evaluation of the diversity
decrease obtained by the division one would make based
on it. The variable that is retained as separation criteria is
the one that produces the best results. We are actually
looking for a binary tree. The attributes that have multiple
values raise, in these conditions, a supplementary issue:
regrouping the values as so the final division will lead to
only two subdivisions.

IV. THE C4.5 ALGORITHM

A more recent algorithm is C4.5 proposed by the
Australian professor Quinlan. Unlike CART, which
generates only binary trees, a node can have here a
variable number of branches. Another difference would
derive from the treatment of nominal variables, which will
now have one branch for each possible value. The
precursor of this algorithm, the ID3, developed by the
same author, enjoyed a vast popularity and was used in
various computer products. This one uses for an
evaluation criteria of divisions the information gain
obtained, as well as the uncertainty degree removed,
concept that derives from Shannon's information theorem.

Because its usage comes in favor of numerous branches
to which a small number of records from the example set
will correspond, C4.5 uses the ratio between the total
information gain obtained by the corresponding division
and the information gain that is only due to the sub-
assemblies count it generates. The tree pruning is also
made in a different manner that the one CART practices;
the analysis is based also on the teaching data, without
having to invoke the test or evaluation distinct data.

In its informatics representation, the C4.5 can
automatically generate rules. Beginning with the complete
set, generated directly based on the tree, the application
follows a generalization chain meant to decrease the rules
count. For this purpose we remove certain conditions for
each given rule and we verify how this maneuver
increases the error rate. A series of other transformations

can also be operated for this goal, as so, in the end, the
rule count can be smaller than the leaf count.

Decision trees are a standard Data Mining tool and
many of them are available in the C4.5 package. Decision
trees are generally preferred due to the comprehensivity of
their hypothesis and the efficiency of their learning and
evaluation.

Decision trees are usually binary trees with simple
classifiers associated to each internal node and with a
classification associated to each leaf. In order to evaluate a
T tree for an input x, the x attribute will be given to each
classifier. The outputs of simple classifiers associated to
the nodes determine a unique path from the root to a
certain leaf of the decision tree.

Decision trees are generally understood through a
descendant development procedure that begins with the
root node and chooses a part of the data that maximize a
cost function, usually a measurement of the
subassemblies’ “impurities” that is implicit defined in the
moment of data partitioning. Afterwards the
subassemblies are associated to two decision trees. The
procedure is recursively applied to the child nodes and the
tree is being enlarged until a stop condition is met.

The C4.5 algorithm only generates binary trees, a node
having a variable number of branches. C4.5 is able to
automatically generate rules. Starting with the complete
set of rules, generated directly on the tree’s basis, there
will be a generalization part, in order to reduce the number
of rules. This way, for each rule certain conditions are
eliminated and the increase of the error rate must be
verified. A lot of other transformations can also be made
in order to decrease the number of rules.

The steps of the C4.5 algorithm are presented as
follows:

1) selects the attributes that have proven
the most quantity of gained information
2) given two classes P and N:
a) given a set of examples S that contain p
elements from the P class and n elements
from the N class
b) the information quantity required to
decide if a random example from S belongs
to the P or N class is defined in relation
(1):

()
np

n
np

n
np

p
np

pnpI
++

−
++

−= 22 loglog, (1)

3) assuming that by using an attribute A, a
set S will be partitioned in the following
sets {S1, S2, ...,Sv}

a) if Si contains pi examples from
P and ni examples from N, then the
entropy or the necessary
information for the classification
of all the objects from all the Si
trees is (2):

() ()∑
= +

+
=

n

i
ii

ii npI
np
npAE

1

, (2)

4) the codification information gained on
the A branch would be:
Gain(A) = I(p, n) - E(A)

C4.5 is an algorithm for the induction of decision trees,
being, as mentioned before, an extension of the ID3
algorithm which unlike C4.5 solves some problems such
as data extra-matching, treating continuous attributes and
attributes with missing values, increasing the
computational efficiency. The C4.5 generates a decision
tree by recursively partitioning the data amount, using a
depth-first parsing strategy. The algorithm takes into
consideration all the possible tests for partitioning the
data and selects the tests that will lead to the best
information gain.

Considering the entropy concept as the “impurity” of a
set of training examples S, the efficiency of an attribute
for classification of these examples can be estimated. The
information gain measures the expected reducing of the
entropy caused by partitioning the set according to the
values of an attribute A (3).

() () ()
()()

()v
AValv

v SH
Scard
ScardSHASIG ∑

∈

−=, (3)

where Val(A) is the set of A attribute values, Sv is the
subset of S for which the A attribute has the v value, and
H(S) is the entropy of the set S with n classes, each with a
pi appearance probability (4):

() ∑
=

−=
n

i
ii ppSH

1
2log (4)

Another important feature of the algorithm is the
pruning of the decision tree, once the learning is done,
meaning that the tests that are not really helpful for the
decision problem are being eliminated. A later version of
the C4.5 algorithms is the C5.0, used mostly in
commercial systems.

V. REINFORCEMENT LEARNING ALGORITHM

Reinforcement Learning is a very interesting Machine
Learning algorithm. The idea of Reinforcement Learning
is very simple: an agent is exploring an environment and
acting upon it, and in the end it receives a reward or a
penalty. The agent will find out whether it acted correctly
or not, without having the reasons explained.

In Reinforcement Learning, also called learning with a
critic or rewarded learning, no hints are offered
regarding the expectations; the only feedback is that the
result will be categorized as correct or wrong. The
situation is similar to the one of a critic that only claims
that a certain thing is right or wrong, but doesn’t explain
it. Often the reward is being delayed.

The Reinforcement Learning algorithms are looking
for a way of action in order to maximize the reward. The
subject that has to learn isn’t told the direction to action,
as in most of Machine Learning techniques, instead it has
to discover which action might bring the most efficient
reward. In the most complex situations, the actions will
not only affect the immediate rewards but also the future
rewards.

The Reinforcement Learning technology is generally
used for solving the so called Markov Decision Problems
(MDP). The structure of a MDP consists in the following

elements: the system’s state, the actions, the transition
probability, the transition rewards, a policy and a
performance measurement mode.

The system’s state is a parameter or a set of parameters
that are supposed to describe the system. If a system’s
state is modifying in time, it is called to be a dynamic
system. A dynamic system can be considered the queue
formed at the cashier in a store. In this conditions, the x
state, represented by the number of individuals that form
the queue, becomes x+1, if a new individual is joining the
queue, and becomes x-1, when an individual has paid and
leaves the queue.

Actions represent situations in which a system may or
may not fulfill one of the options it has available. We
consider an action a to be selected in the state i, and let j
be the next state. The probability of transition is
expressed by p(i, a, j) which depicts the probability of
transitioning from the state i to state j through action a.

The system will usually be rewarded when a transition
from one state to another is performed, reward described
by r(i, a, j).

The choice of the action in each state the system
transitions through is established by a rule. In certain
states no actions will be performed. The states in which
decisions should be taken are naturally named decision
states.

The rule for selecting an action must be designed as so
it would be capable of selecting the optimal action, thus a
means of measuring performance becomes available,
means we shall define as the medium reward for a rule.

If we have a rule π then π(i) will be the selected action
by this rule for the state i. Let xs identify system state
before the s-th transition. The next formula (Gosavi,
2004) will describe the medium reward for the rule π
starting with state i, considering x1=i. The medium
reward, ρi, expresses the sum of all immediate rewards
divided to the number of transitions (k), calculated on a
longer period of time.

()()

k

ixxxxrE
k

s
sss

ki









=

=
∑
=

+

∞→

1
11,,

lim

π
ρ (5)

E – the medium value of the sum above
i – the initial system state
π(xs) – the action in state xs

The limit in formula (5) is constant for any value of x1
if the Markov problem satisfies certain conditions, thus
we are going to have ρi = ρ for any value of i. The goal of
Markov’s decision problem is finding a rule that will
maximize the medium reward.

MDP can be solved through the dynamic programming
method, which requires all the transition probabilities,
p(i, a, j), and the rewards r(i, a, j).

The SMDP (Semi-Markov Decision Problem) variant
requires an extra parameter that is the time span required
for each transition. The duration of transition from state i
to state j influenced by another state x will be expressed
by t(i, a, j). For SMDP the medium reward within the

given conditions, using an initial state i, is defined
through the next formula (6).

()()

()() 







=









=

=

∑

∑

=
+

=
+

∞→ k

s
sss

k

s
sss

ki

ixxxxtE

ixxxxrE

1
11

1
11

,,

,,
lim

π

π
ρ (6)

VI. THE Q-LEARNING ALGORITHM

An example of Reinforcement Learning is the so-
called Q-learning algorithm, an extension of the
traditional dynamic, which allows an agent to learn some
rules from an arbitrary environment.

Q-learning eliminates the need of considering the
maximum in a set of integrals, succeeding to map values
(Q-values) from state/action pairs. Rather than
associating the value of a function, Q-learning will use
the so-called Q-functions. In every state there is a Q-
value associated with each action. This Q-value is the
sum of rewards achieved for performing the associated
actions and following the given rules. In the Q-learning
context, the value of a state is defined as the maximum of
a Q-value in the given state.

Having the estimated utility Q-function which
describes how useful an actions is, given a certain state.
Q(s, a) is the immediate reward achieved for performing
an action that leads to a maximum usability of the
resulting state.

The formal definition of the Q-function is the
following:

))','((max),(),(' asQasrasQ aγ+= (7)
where:

r(s, a) is the immediate reward;
γ is the relative value of the delayed rewards

versus the immediate rewards (0 or 1);
s� is the new state following after action a;
a, a� are the actions in states s and s�.

The selected actions are defined by the following
function:

),(maxarg)(asQs a=π (8)

Q-learning represents an algorithm without predefined
learning rules. It can be demonstrated that for a sufficient
amount of training under any rule ε-soft, the algorithm
converges with a probability of 1 towards a small
approximation of an action-value function for an random
rule-target group. Q-learning teaches optimal rules even
when the actions are selected from larger or even random
rules.

VII. CONCLUSION

In conclusion, from the point of view of storing data
for using it in a decision support system, the XML format
remains as elegant in structure as well as in utilization,
but it is not recommended for huge amount of data;
storage is possible in this case, but further processing of
these data becomes way to difficult compared to the

alternatives involving database systems. A problem in
any given field of interest can be translated into a Markov
decision process and solved using this technique.
Reinforcement Learning is an extension of the classical
dynamic programming and covers a set of problems it can
solve. As opposed to the supervised learning,
Reinforcement Learning does not require I/O data. It is
foreseen that this kind of technology, combined with
others, will be able to finally solve problems that could
not be solved before.

REFERENCES

[1] Bishop, C., Pattern Recognition and Machine Learning, Springer

Publishing, 2006
[2] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I.

Witten, “The WEKA data mining software: an update”, SIGKDD
Explorations, Volume 11, Issue 1, 2009

[3] A.R. Ganguly, A., Gupta , Data Mining Technologies and decision
Support Systems for Business and Scientific Applications,
Encyclopedia of Data Warehousing and Mining, Blackwell
Publishing, 2005

[4] Hamilton, H., Gurak, E., Findlater, L., Olive, W., Knowledge
Discovery in Databases, University of Regina, Canada, 2002,

[5] http://www2.cs.uregina.ca/~hamilton/courses/831/notes/ml/dtrees/
c4.5/tutorial.html

[6] Joshi, K. P., Analysis of Data Mining Algorithms,
http://userpages.umbc.edu/~kjoshi1/data- mine/proj_rpt.htm, 1997

[7] C. Mitra, G., Models for decision making: an overview of
problems, tools and major issues, Mathematical Models for
Decision Support, NATO ASI Series, Vol. 48, Springer Publshing,
1988

[8] D. Power, Categorizing Decision Support Systems: A
Multidimensional Approach, in volume Decision Making Support
Systems: Achievements, Trends and Challenges for New Decade,
Idea Group Publishing, 2003

[9] C. O.Stanciu, supervisor: Professor Ioan Ştefan Niţchi Ph.D.,
“Contributions to using decision support systems based on
machine learning technologies in business management, Ph.D.
thesis, 2010

[10] C. O.Stanciu, “Solutions for the development of decision support
systems”, ANALE Seria Ştiinţe Economice (Universitatea
„Tibiscus” din Timişoara), Vol. XV, ISSN. 1582 – 6333, 2009

[11] C. O.Stanciu, A. Cojocariu, “XML Technologies for Improving
Data Management for Decision Algorithms”, 20th DAAAM
International Conference, Vienna, 2009

[12] I.H. Witten, E. Frank, “Data mining – practical machine learning
tools and techniques”, Second Edition, Norgan Kaufmann
Publishing, 2005

