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Abstract - This paper presents most often used machine 
learning algorithms for business decisions support. Machine 
Learning algorithms, particularly decision tree generating 
algorithms and reinforcement learning algorithms can be 
applied upon data stored using XML technologies, in order 
to support business decisions. 

I. INTRODUCTION 

The management and use of information, as an 
essential resource of a company, acquires new 
particularities deriving from its use in supporting 
decisions and from the continuous growth of the 
complexity of the decision process. 

The decision process is a an assemble of activities 
driven by only one or several individuals facing an event 
that generates more than one acting direction, following 
the optimal direction, according to the value system of 
the decision makers.  

This paper presents most often used machine learning 
algorithms that are used for business decision support. 

II. DECISION TREES 
 
Decision trees are an easy applicable for classification 

and prediction, the result being presented in a tree form 
with automatically set logic rules hierarchy by exploring a 
set of examples. The examples are similar to records with 
several attributes and the rules are being established by a 
detailed dividing of the assemble of examples, depending 
on the content of the attributes.  

Building the decision tree begins from its root, which 
shows the available examples. The initial assemble is 
divided into intermediary nodes. Each node is being 
evaluated and is divided in other nodes if possible, until 
the terminal undividable nodes are found. When 
effectively processing data, the attributes are grouped in 
two categories: dependent and independent attributes. 
There is only one dependent attribute, also named target 
attribute, onto which we are searching for influences from 
the other attributes, the independent ones. From all the 
independent attributes we select the one that has the most 
powerful impact on the target field, the one that eventually 
supports the division of the record assembly into the most 
relevant sub-assemblies. For each of these subdivisions 
we re-perform the analysis, using the same target field but 
considering only the attributes that were left out in the 
previous steps, and seeking for new subdivisions.  

After the tree construction, the new data can be 
included, at some amount of certainty, into one of the leaf 

nodes, depending on their attributes values, classifying 
them or being able to perform predictions regarding them. 

III. DEVELOPMENT OF DECISION TREES 
One of the most popular methods used in developing 

decision trees is CART (Classification and Regression 
Trees). This one starts with seeking out the independent 
variable which has values that allow the best division to 
take place. For this we move on to calculating a diversity 
index for the whole record assembly given an attribute. 
The procedure describes the parse of the independent 
attributes one by one and the evaluation of the diversity 
decrease obtained by the division one would make based 
on it. The variable that is retained as separation criteria is 
the one that produces the best results. We are actually 
looking for a binary tree. The attributes that have multiple 
values raise, in these conditions, a supplementary issue: 
regrouping the values as so the final division will lead to 
only two subdivisions. 

IV. THE C4.5 ALGORITHM 
 

A more recent algorithm is C4.5 proposed by the 
Australian professor Quinlan. Unlike CART, which 
generates only binary trees, a node can have here a 
variable number of branches. Another difference would 
derive from the treatment of nominal variables, which will 
now have one branch for each possible value. The 
precursor of this algorithm, the ID3, developed by the 
same author, enjoyed a vast popularity and was used in 
various computer products. This one uses for an 
evaluation criteria of divisions the information gain 
obtained, as well as the uncertainty degree removed, 
concept that derives from Shannon's information theorem.  

Because its usage comes in favor of numerous branches 
to which a small number of records from the example set 
will correspond, C4.5 uses the ratio between the total 
information gain obtained by the corresponding division 
and the information gain that is only due to the sub-
assemblies count it generates. The tree pruning is also 
made in a different manner that the one CART practices; 
the analysis is based also on the teaching data, without 
having to invoke the test or evaluation distinct data. 

In its informatics representation, the C4.5 can 
automatically generate rules. Beginning with the complete 
set, generated directly based on the tree, the application 
follows a generalization chain meant to decrease the rules 
count. For this purpose we remove certain conditions for 
each given rule and we verify how this maneuver 
increases the error rate. A series of other transformations 



can also be operated for this goal, as so, in the end, the 
rule count can be smaller than the leaf count. 

Decision trees are a standard Data Mining tool and 
many of them are available in the C4.5 package. Decision 
trees are generally preferred due to the comprehensivity of 
their hypothesis and the efficiency of their learning and 
evaluation. 

Decision trees are usually binary trees with simple 
classifiers associated to each internal node and with a 
classification associated to each leaf. In order to evaluate a 
T tree for an input x, the x attribute will be given to each 
classifier. The outputs of simple classifiers associated to 
the nodes determine a unique path from the root to a 
certain leaf of the decision tree.  

Decision trees are generally understood through a 
descendant development procedure that begins with the 
root node and chooses a part of the data that maximize a 
cost function, usually a measurement of the 
subassemblies’ “impurities” that is implicit defined in the 
moment of data partitioning. Afterwards the 
subassemblies are associated to two decision trees. The 
procedure is recursively applied to the child nodes and the 
tree is being enlarged until a stop condition is met. 

The C4.5 algorithm only generates binary trees, a node 
having a variable number of branches. C4.5 is able to 
automatically generate rules. Starting with the complete 
set of rules, generated directly on the tree’s basis, there 
will be a generalization part, in order to reduce the number 
of rules. This way, for each rule certain conditions are 
eliminated and the increase of the error rate must be 
verified. A lot of other transformations can also be made 
in order to decrease the number of rules.  

The steps of the C4.5 algorithm are presented as 
follows: 

1) selects the attributes that have proven 
the most quantity of gained information 
2) given two classes P and N: 
a) given a set of examples S that contain p 
elements from the P class and n elements 
from the N class 
b) the information quantity required to 
decide if a random example from S belongs 
to the P or N class is defined in relation 
(1): 
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3) assuming that by using an attribute A, a 
set S will be partitioned in the following 
sets {S1, S2, ...,Sv} 

a) if Si contains pi examples from 
P and ni examples from N, then the 
entropy or the necessary 
information for the classification 
of all the objects from all the Si 
trees is (2): 
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4) the codification information gained on 
the A branch would be:  
Gain(A) = I(p, n) - E(A) 

C4.5 is an algorithm for the induction of decision trees, 
being, as mentioned before, an extension of the ID3 
algorithm which unlike C4.5 solves some problems such 
as data extra-matching, treating continuous attributes and 
attributes with missing values, increasing the 
computational efficiency. The C4.5 generates a decision 
tree by recursively partitioning the data amount, using a 
depth-first parsing strategy. The algorithm takes into 
consideration all the possible tests for partitioning the 
data and selects the tests that will lead to the best 
information gain. 

Considering the entropy concept as the “impurity” of a 
set of training examples S, the efficiency of an attribute 
for classification of these examples can be estimated. The 
information gain measures the expected reducing of the 
entropy caused by partitioning the set according to the 
values of an attribute A (3). 

( ) ( ) ( )
( )( )

( )v
AValv

v SH
Scard
ScardSHASIG ∑

∈

−=,    (3) 

where Val(A) is the set of A attribute values, Sv is the 
subset of S for which the A attribute has the v value, and 
H(S) is the entropy of the set S with n classes, each with a 
pi appearance probability (4): 
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Another important feature of the algorithm is the 
pruning of the decision tree, once the learning is done, 
meaning that the tests that are not really helpful for the 
decision problem are being eliminated. A later version of 
the C4.5 algorithms is the C5.0, used mostly in 
commercial systems. 

 

V. REINFORCEMENT LEARNING ALGORITHM 
 

Reinforcement Learning is a very interesting Machine 
Learning algorithm. The idea of Reinforcement Learning 
is very simple: an agent is exploring an environment and 
acting upon it, and in the end it receives a reward or a 
penalty. The agent will find out whether it acted correctly 
or not, without having the reasons explained. 

In Reinforcement Learning, also called learning with a 
critic or rewarded learning, no hints are offered 
regarding the expectations; the only feedback is that the 
result will be categorized as correct or wrong. The 
situation is similar to the one of a critic that only claims 
that a certain thing is right or wrong, but doesn’t explain 
it. Often the reward is being delayed. 

The Reinforcement Learning algorithms are looking 
for a way of action in order to maximize the reward. The 
subject that has to learn isn’t told the direction to action, 
as in most of Machine Learning techniques, instead it has 
to discover which action might bring the most efficient 
reward. In the most complex situations, the actions will 
not only affect the immediate rewards but also the future 
rewards. 

The Reinforcement Learning technology is generally 
used for solving the so called Markov Decision Problems 
(MDP). The structure of a MDP consists in the following 



elements: the system’s state, the actions, the transition 
probability, the transition rewards, a policy and a 
performance measurement mode. 

The system’s state is a parameter or a set of parameters 
that are supposed to describe the system. If a system’s 
state is modifying in time, it is called to be a dynamic 
system. A dynamic system can be considered the queue 
formed at the cashier in a store. In this conditions, the x 
state, represented by the number of individuals that form 
the queue, becomes x+1, if a new individual is joining the 
queue, and becomes x-1, when an individual has paid and 
leaves the queue. 

Actions represent situations in which a system may or 
may not fulfill one of the options it has available. We 
consider an action a to be selected in the state i, and let j 
be the next state. The probability of transition is 
expressed by p(i, a, j) which depicts the probability of 
transitioning from the state i to state j through action a. 

The system will usually be rewarded when a transition 
from one state to another is performed, reward described 
by r(i, a, j). 

The choice of the action in each state the system 
transitions through is established by a rule. In certain 
states no actions will be performed. The states in which 
decisions should be taken are naturally named decision 
states. 

The rule for selecting an action must be designed as so 
it would be capable of selecting the optimal action, thus a 
means of measuring performance becomes available, 
means we shall define as the medium reward for a rule. 

If we have a rule π then π(i) will be the selected action 
by this rule for the state i. Let xs identify system state 
before the s-th transition. The next formula (Gosavi, 
2004) will describe the medium reward for the rule π 
starting with state i, considering x1=i. The medium 
reward, ρi, expresses the sum of all immediate rewards 
divided to the number of transitions (k), calculated on a 
longer period of time. 
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E – the medium value of the sum above 
i – the initial system state 
π(xs) – the action in state xs 

The limit in formula (5) is constant for any value of x1 
if the Markov problem satisfies certain conditions, thus 
we are going to have ρi = ρ for any value of i. The goal of 
Markov’s decision problem is finding a rule that will 
maximize the medium reward. 

MDP can be solved through the dynamic programming 
method, which requires all the transition probabilities, 
p(i, a, j), and the rewards r(i, a, j). 

The SMDP (Semi-Markov Decision Problem) variant 
requires an extra parameter that is the time span required 
for each transition. The duration of transition from state i 
to state j influenced by another state x will be expressed 
by t(i, a, j). For SMDP the medium reward within the 

given conditions, using an initial state i, is defined 
through the next formula (6). 
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VI. THE Q-LEARNING ALGORITHM 

An example of Reinforcement Learning is the so-
called Q-learning algorithm, an extension of the 
traditional dynamic, which allows an agent to learn some 
rules from an arbitrary environment. 

Q-learning eliminates the need of considering the 
maximum in a set of integrals, succeeding to map values 
(Q-values) from state/action pairs. Rather than 
associating the value of a function, Q-learning will use 
the so-called Q-functions. In every state there is a Q-
value associated with each action. This Q-value is the 
sum of rewards achieved for performing the associated 
actions and following the given rules. In the Q-learning 
context, the value of a state is defined as the maximum of 
a Q-value in the given state. 

Having the estimated utility Q-function which 
describes how useful an actions is, given a certain state. 
Q(s, a) is the immediate reward achieved for performing 
an action that leads to a maximum usability of the 
resulting state. 

The formal definition of the Q-function is the 
following: 
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where: 

r(s, a) is the immediate reward; 
γ is the relative value of the delayed rewards 

versus the immediate rewards (0 or 1); 
s� is the new state following after action a; 
a, a� are the actions in states s and s�. 

The selected actions are defined by the following 
function: 
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Q-learning represents an algorithm without predefined 
learning rules. It can be demonstrated that for a sufficient 
amount of training under any rule ε-soft, the algorithm 
converges with a probability of 1 towards a small 
approximation of an action-value function for an random 
rule-target group. Q-learning teaches optimal rules even 
when the actions are selected from larger or even random 
rules. 

VII. CONCLUSION 

In conclusion, from the point of view of storing data 
for using it in a decision support system, the XML format 
remains as elegant in structure as well as in utilization, 
but it is not recommended for huge amount of data; 
storage is possible in this case, but further processing of 
these data becomes way to difficult compared to the 



alternatives involving database systems. A problem in 
any given field of interest can be translated into a Markov 
decision process and solved using this technique. 
Reinforcement Learning is an extension of the classical 
dynamic programming and covers a set of problems it can 
solve. As opposed to the supervised learning, 
Reinforcement Learning does not require I/O data. It is 
foreseen that this kind of technology, combined with 
others, will be able to finally solve problems that could 
not be solved before. 
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