
Model Driven Architecture is a Complex System

E. A. Cherkashin*, V. V. Paramonov*, S. A. Ipatov*, V. S. Tertychniy** and I. N. Terehin***
* Institute of System Dynamics and Control Theory SB RAS, Irkutsk, Russia

** Irkutsk State Technical University, Irkutsk, Russia
*** Institute of Mathematics Economics and Informatics at Irkutsk State University, Irkutsk, Russia

eugeneai@icc.ru

Abstract – An abstract formalization of the software
development life cycle (process) in the theory of complex
systems and complexes is considered. The formalization
highly depends on so called reference set, which is a basis of
bundle of the life cycle into a set of structures, e.g., various
software model representations. An example, which appears
to be a generalization of Model driven architecture (MDA),
is considered, as well as the present approaches and
technologies for the software development if the proposed
model implied.

I. INTRODUCTION

Any software development life cycle consists of
distinct stages and involves various agents (manages,
software developers, users, etc.) and technologies, such as
mathematical modeling, information representation
modeling, information processing and visualization, user
interfaces. At the very beginning the problem stated
represents an ideal object, which is specified during the
stages as various linguistic, mathematical and information
models. At the stages of implementation the models are
represented as algorithms and data structures, which are
realized as program objects and components. At the
testing and deployment stages the software is used by
testers and users. In the general case new ideas and
problems affect the life cycle at any stage. For example,
new requirements are analyzed on the basis of the
obtained experience and new software life cycle is
constructed; new implementation technology implies
reconstruction (translation) of the source code into new
language and corresponding data structures adaptation; the
user’s suggestions of the user interface modifications
imply data structure and source code reconstruction.

Various combinations of stages form a number of life
cycle schemes, such as waterfall and spiral models, ‘V’-
model, agile and extreme approaches, iterative and
incremental development, and various improvement
models [1]. All the approaches use models of various
degrees of abstraction and formalization. We consider a
general case of life cycle as a process of adaptation of new
ideas, requirements and specifications implies
modification of all the models (formalized and implied).
Thus, the software development process is represented as
propagation of the modifications.

The problem we consider in the paper is to construct
an approach to describe the process of the modification

propagation as a basis of a corresponding instrumental
environment. The necessity of the modification
propagation results from application of the theory of
complex systems and complexes to software life cycle.

II. THE THEORY OF COMPLEX SYSTEMS AND

COMPLEXES [2]

Complexes (compositions) and systems of
compositions (configurations)

iX are formed from

combinations of various elements, components, systems,
complexes, systems-complexes. Configurations

iX are

different kinds of complex system’s polymorphism. The
universal structureX contains all

iX , and in this case it is

analogous to notion of set of all subsets or category of all
the subcategories. The connections between compositions
are represented by means of mapping
(morphism)

jiij XXF →: . The composition connected

with morphisms (represented a category in the
mathematical sense) form a complex. The comparison of
the two compositions

iX and
jX ,

namely
ijij XXX \=∆ , shows the dissimilarity between

j-th composition and i-th one. For example, let
iX ,

jX be

different UML models of software before and after adding
a new structure, so

ijX∆ reflects a complex of the current

development step. If
iX ,

jX are two UML models of

different software systems, then
ijX∆ fixes, in particular,

their structural dissimilarity, and
ijF is a comparison

relation. The structure
ijX∆ is also a composition and

belongs to the set of all the comparisonsX∆ . The set F
is a set of all possible mappings

ijF .

There are also a reference set of comparisonI ; it is the
interval [0, 1], which is a metric linearly ordered inductive
continuous bounded above and below set of points. The
one-to-one correspondence of compositions and reference
set points is denoted by relation (↔), for example,

II ↔ means that each point I turns into itself; IX ↔
means that any composition from set X is one-to-one
corresponded to a definite point of the interval [0, 1]. In
the latter case I is a bundle (fibration) basis of X , in
other words the differentiation X onto compositions is

conducted by means of comparing them with points
(numbers) from the interval [0, 1].

The axioms of complex systems' theory are to compare
compositions and their connection functions with an
identification index of an order and together.

1) ;IX ↔ 2) ;IF ↔ 3) .ijij FX ↔∆ (1)

The axioms 1 and 2 transfer all the order properties of
the set I to the sets of all compositions XX i ⊂ , their

comparisons XX i ⊂∆ , and mappings FFij ⊂ . This also

implies that all the combinations are toposes, i.e. they are
linearly ordered structures with the individual measure
from I . By means of I the structures, their comparisons
and mappings are one-to-one connected to each other.

.IXFX ↔∆↔↔

This emphasize a necessary moment of complexing,
the complexes, their comparisons and mappings are
equivalent (identical in the sense of dialectical logics), and
have the single identification index in I . The complexes
are self developing systems, where each alteration is based
on its structure .XX ↔∆ Complexes are static
formations, the transitional states with partially formed
connections cannot be related to them.

Complexes are linear sequences of morphisms
(categories) LL →→→→ kji XXX ;

the contained compositions form homologous series of
comparison, as each composition has a measure from I ,
this series is also homotopic. Homologo- homotopic series
form comparisons and mappings. All the elements of the
series are functionally similar, that’s why they can be
considered as series of analogs.

Any fragment of a homological series
ji XX → is a

complex, which corresponds to a complex of comparison
of the dissimilarities

ji XX ∆→∆ . Consequently, a

similarity of the structure implies similarity of
modifications and vice-versa. Therefore, observed
similarity in the structure must be caused by similarities of
the processes and their models. The search of structural
and dynamical similarity is the main subject of the theory
of complexes.

A. Application to Software Life Cycle
In the field of software development the theory could

be implemented in various aspects. If we choose the
reference set I as detail level of software model
representation, then 0 could mean a completely abstract
level (just an idea), and 1 denotes completely realized
software complex. Further,

iX will correspond to
informational models of various abstraction. For example,

0X is the original idea, 1X is a textual representation of

the requirements, 2X is an UML model, …, and at the
end of the interval, e.g., 9X is a completely realized

software system. The configurations0X , 1X ,…, 9X

correspond to points ,00̀ =i ,1̀i …, ,19̀ =i (for each

9,...,1,0,1` =< + kii kk
) of the interval [0, 1].

The idea 0X is explained by means of its
terminological basis of formalization, and references to
the software domain and problem stated. The reference
could be an existing ontology or a textual representation
of the problem. The dissimilarity 01X∆ denotes the
additional information about requirements to the software
under development. This is a result of the problem and
domain decomposition. As 1X one can understand as
IDEF0 model extended with formal or informal
specification of its structural elements. The morphism 01F
is a creative function done by system analyst under
restriction of some technique, e.g., SADT [3].

The dissimilarity 12X∆ denotes the result of system
designer’s activity 12F of conversion IDEF0 model with
the requirements into set of UML diagrams. All

ijX∆

have their corresponding interpretations.

Theory’s axiomatic basis here is realized as follows:

- Axiom 1 in (1) denotes, that any software system
can be considered (modeled) at various
abstraction levels denoted by I , and the inverse
direction means, that for any set of models the
bundle basis I could be constructed;

- Axiom 2 means that it is possible to develop
software as model transformations and
refinements, as well as having developed a sound
in some sense software, then it has sound model
set representation (formalized or just implied);

- Axiom 3 for each model specialization or
transformation a set of methods (techniques,
tools) to carry out the development could be
found or developed, as well as methods and
instrumental software used to develop software by
means transformation of corresponding models.

The interpretation of the identity XX ∆↔ means
that the process of software development is based on its
structure, X∆ results from testing and exploitation, and
the software development is an improvement of the set of
the models. The complex in this example also form a
homologous (homotopic, analog) series, in other words,
one can make advantage of the same steps as in an early
project using the same set of models X to develop new
software.

 There are various approaches to automatic
transformation of the models in the field of software
development, such as IBM Rational Unified Process,
Model Driven Architecture (MDA) [4] and formal
methods [5]. The approaches are aimed at automation of
creative activity of designers and programmers and
implemented in instrumental software. The software
development tools having a model at input generate a
model or source code, which also we consider as a model.
Most of the transformations are formal and deductive; the
MDA approach requires a Platform Model and a scenario
to specify a variant of the transformation.

A translation of the properties of the theory of
complexes to the processes of MDA-transformations
results in following conclusions.

- In developing software any state ofX , including
X∆ should be stored for later usage in

transformation

- The stored results of the transformations should
be analyzed to extract new knowledge about the
transformation specific of the current task and
also general templates about designing software.

- Complex X∆ is of especial interest and subject of
analysis. Namely, as transformation

ji XX →

corresponds to the dissimilarities
ji XX ∆→∆ ,

then the instrumental software should correct all
the models in X as soon as some

ijX∆ has been

fixed by a developer.

Thus, it is of purpose to construct instrumental
software based on analysis of analogy and propagation of
the modifications X∆ .

B. An Example Project

To investigate the possibilities of the software
development approach we started a pilot project of
notarial office automation. The task selected among stated
as the development of the software is deeply depended on
users’ desire to change: creating instances of documents,
correct errors, forming new document classes, composing
new document workflows, as well as refinement of user
interface aimed at raising the office productivity.

From the functional point of view the notarial office is
primarily an organization for document preparation,
storage, and retrieval; tracking of the individual’s data is
the secondary aim that allows producing the document
more agile. There exist four user roles in the office; they
are “secretary”, who fills in the templates, “template
modifier”, who is an experienced user allowed to
construct forms and describe new regular structures found
in documents, “programmer”, who understands
information modeling and implements the routine tasks as
program modules, and “notary”, who validates and signs
the documents. As usual the roles define the set of
activities and responsibilities for corresponding users.

During the exploitation of the information system
secretaries gain experience, and can evolve in template
modifiers. Shifting a user from first role to another can be
done as a result of his/her qualification assessment. The
assessment can be performed by notary and programmer
or by means of testing, for example, answering a set of
tests and/or doing test exercises.

Each instantiation of a template can be considered as a
copying a document in the storage and its refill with new
data or even just an edition of the copy. Modification of
the second kind can be interpreted in several ways. Firstly,
as mentioned before, it is just refill of the template.
Secondly, it is a template body text error correction or a
further improvement of the document. Thirdly, the
modification could touch the form structure giving rise a
new template of existing kind (class), or form even a new

class of templates, e.g., fixing some parameter or
substructure.

The modification propagation process is based on a
number of document models. Secretaries will fill in
documents as HTML forms and edit the generated
instances in a WYSIWIG HTML editor. HTML is widely
used and support necessary level of the notarial document
representation. There are many useful methods of HTML
generation and modifications. The difference between
documents of various versions is to be propagated to other
models. Such models represent the document layout and
presentation (CSS), structure of the document class (what
parts should be presented in the document and in which
order), structure of the form of the template, fixed data
structures stored in a rational database, and so on. The
structural models are based on corresponding ontologies,
e.g., ontology of structure elements of a document,
ontology for expression individuals’ data, etc.

The system should control the process of the document
designing in a dialog with user, acquiring the additional
information on user’s intention and acting in concordance.
Complex problems are described by users as texts for
programmers, who implements new features of the
software after confirmation of the requirements.

III. IMPLEMENTATION TECHNOLOGIES

Since 2001 OMG exploits Model Driven Architecture
(MDA) of software development. MDA [4] is a part of the
model considered in the section 1.A. MDA exploits three
levels of abstractions to represent software: CIM, PIM and
PSM.

The Computation Independent Model (CIM) reflects
software’s external requirements – its interfaces. CIM
hides structural elements, and can be used for define
specifications and checking requirements.

The software designing technique of MDA is based on
multistage transformation of Platform Independent Model
(PIM) into a number of Platform Specific Models (PSM).
PIM is a model of the software reflecting most of the
structural and some semantic aspects of the software, but
the model contains no information about implementation
of the structures on the target program architecture. UML
Class Diagram extended with some tag values and
additional stereotypes is an example of PIM. The
extension allows one to denote implementation hints for
structures. PSM is a model, which can be implemented as
source code of the subsystems, e.g., it could be a physical
structure of a rational database, which is directly
(deductively or by means of code templates) translated
into DDL SQL-requests.

The transformation of the PIM into PSMs is carried
out under control of a Platform Model (PM) and a
transformation scenario. PM contains information and
algorithms of PIM’s structure analysis and generation of
corresponding structures in PSMs. Sometimes PSM is
understood as specified variant of PIM. The tag values
and stereotypes are used to direct the transformation of a
structure into desired frame.

PMs in most of commercial MDA systems have been
implemented on the basis of algorithmic approach. They

are not far from CASE systems translating UML diagrams
into a source code by various plug-ins. The main idea of
MDA is to allow developer to modify PM according
his/her preferences and task properties. Our experience
shows that usage of present logical languages and PMs
based on formalized knowledge [6] allows us to affect the
transformation in an efficient way by means of changing a
rule set content.

We use [6] a logical approach to implement
transformation. The source PIM is represented as XMI-
file version 1.2. As it is a variant of XML, the file is
parsed by means of libxml XML parsers into a tree. The
tree encapsulated inside a LogTalk module, which
processes queries to PIM structure. The transformation
procedures and PM is represented as set of LogTalk
modules connected with messages. Each module contains
a knowledge base to recognize an aspect in the PIM and
its derivate structures. The results of recognition form new
facts about PSM. The transformation scenario is a set
(sequence) of the leave modules, which generate source
code and other data structures.

Thus, the generated PSM is represented as set of facts
consisting of the subset describing the original PIM,
which is obtained while querying the XML tree, and the
subset describing the implementation aspects of the
software under development. The resulting source code is
generated by leave modules by means of templates, so the
templates play the similar role as CSS in web, it represents
PSM as texts of source codes.

Main advantages of MDA usage in the software
development are as follows:

1. Design stage independence of the implementation
platform; capability to replace the platform
without redesigning PIM.

2. Formal definition of PM: programmers’
knowledge is represented as rules and algorithms.

3. Raising the automation level of the life cycle:
early stage modifications (design stages) are less
expensive to implement in PSMs.

MDA is a great approach and successfully used in
development complex software, but it has significant
disadvantage, which we are to overcome:

1. Using the MDA in simple projects usually extends
time of software construction, although obtained
formal PIM and PM models when analyzed could
be used in other projects;

2. Currently MDA is of little use in already
constructed and implemented systems and
systems based on stored data manipulation, e.g.,
existing informational systems, as modification of
information data model results in database
structure modification like adaptation to new data
structures;

3. Modification of PIM and source code is ignored
by the procedures of transformations.

The support of the above mentioned propagation of
dissimilarities

ijX∆ and modeling whole life cycle’s

homology should overcome the disadvantages, and it
means, in particular, that the instrumentation software
should support the transformation in both directions.

IV. SOURCES OF MODIFICATIONS

When a MDA tool generates a source code, the
problem appears when the generated code was modified
by a programmer. The modification can be easily lost
because of likely following regeneration. One of the ways
to conserve modifications is to represent the generated
software framework as a library and allow programmers
to inherit the code. Changing sources is useful because of
programmer can more comfortable figure out the correct
data types and names the entities “in place”, adjust the
procedures to improve performance.

Controlling changes in source code can be realized
through using version control systems that can efficiently
compare the source code versions, and through developing
compilers, which could be aware of the PSM and PIM
existence. In the simplest case the difference of the
versions is stored as a patch; the patch reapplied each time
after the source code regeneration; conflicts are resolved
interactively by programmer. Another way is to analyze
both versions of the source code as parsing trees, the
difference propagated into a PSMs’ and PIM’s versions.
The propagation should be made under programmer’s
supervision: programmer must supply the information on
the meaning of the difference.

To support the propagation on the level of the source
code one can take advantages of the literate programming
tools and data formats, which can be thought of as a way
of hypertext markup of the source code generated from
PSMs. Literate programming is a way of source code
construction, where the programmer mixes a task
description and the task solution – the program – in the
same source text file or a tree structure. The program is
also constructed from structural parts. The literate
programming transformational tools analyze the source
structure and generate source code tagged as special cases
of comments of the generated program to reconstruct the
original structure in case of generated source modification.
Some literate programming tools can generate a whole
project from one tree (see for example Leo editor [7]) and
track some source code modifications.

In MDA case the source structure is a PIM,
transformation modules include data about original
structure of the PIM as tags into comments of the
generated source code. These tags are semantic marks of
the source code intervals. In this case the difference of the
source codes can be directly associated to the structural
element of the source model.

The theory of complex systems states that .XX ↔∆
In our case this means, that the structures for the models
representation can be used to represent the modifications,
also the algorithms of transformations of the models can
be used to transform of the modifications. The
modifications can be represented in the similar way as
patch files as groups <removed substructure/context of
removal, added substructure>.

Another way of obtaining new information for models
is the texts related to the software domain. New notions
could be extracted by means of text analysis of new
requirements, as the texts are based on the steady (in time)
terminological basis, allowing human beings to
understand each other. Texts contain artifacts referencing
informational structures of the software, e.g., template
word sequences denoting concrete user interface or data
structures. There are approaches constructing formal
taxonomies (ontologies) from analysis of appearance
frequency of terms, see, e.g., [8]. The requirements
contain both new restriction and new terms, which
possible be a new classes or instances. Two versions of
the ontology compared and the difference - new notions
and classes shifting in the hierarchy - will reflect the new
requirements.

Let us briefly consider a technique [8] for text analysis
and thesaurus extraction. The technique's input is a set of
texts and output is a thesaurus, where for all terms a subset
of the source text set corresponding to the term is
associated. The technique consists of four steps:

1. Construction of the stemmed word index of the
texts' set.

2. Form a terminological basis as a set of terms; the
terms are represented as a sequence of adjacent
stemmed words.

3. Hierarchical clustering of the text set, where the
texts are described in the space of frequencies of
the terms (the sequences) appearance.

4. Association of the cluster nodes to the terms, as
semantic value of the node, thus, forming a
thesaurus.

Textual representation also used by programmers
using revision control systems to describe work done. The
description can be considered as a text block of
corresponding literate programming source code. There
are developer groups, which have agreements of tagging
text with special words (such as “UPD:”, “TODO:”,
“FEATURE:”) to define modification semantics more
formally. Analysis of the descriptions allows one to
connect ontological notions to source code components
and functions of the new structures to its implementation.

The history of the development process is to be stored
in a revision control system. Its branching structure will
reflect the natural structure of the software development
process. Comparing the branching structure with existing
formal taxonomies gives rise of relation of the object
classes to their implementation approaches. Open source
distributed concurrent versioning system Git [9] has most
powerful commit approach, which allows one to fix
changes partially, and powerful branching model,
merging, pushing/pulling changes, and repository cloning.

User interfaces are also the sources of the
modifications as they are parts of the software reflecting
all structures of the software projects. The main role of the
user interfaces in the software development process is
adaptation to the software structures and user
requirements. So, the allowing user to modify the user

interface will result in the new set of modifications related
to layout of the widgets, grouping the common
components, and fine adjustment of the behavior of the
widgets.

CONCLUSION

Software development life cycle has been considered
as subject of the theory of complex systems and
complexes [2] implying that the software development is a
natural process. The life cycle is represented as system of
models and morphisms between them. Analysis of the
theory’s properties realization in the model shown, that
the present instrumental software productivity could be
extended by means of developing techniques for analysis
of the passed life cycle stages, analysis and propagation of
modification of the models.

In the last section of the paper we considered some
existing sources of modifications in the framework of
Model Driven Architecture (MDA) and software
utilization, for example, joining the code generation stage
of MDA and compilation stage of programming language
allow one to propagate modification of previously
generated source code to the abstract models of the
software; extraction formal taxonomy from analysis of
textual representations of users’ requirements and logs of
concurrent versioning systems [9] allows one to figure out
new notions from new requirements.

For some tasks appearing in the paper a variant of the
solution is presented as a methods or informational
technology. The problem of the software development
history analysis is not considered and is a subject of
further investigation, as well as implementation of the
considered ideas as an open-source MDA software
development tool.

REFERENCES
[1] “Software development process - Wikipedia, the free

encyclopedia”, access date – 03-aug-2011,
http://en.wikipedia.org/wiki/Software_development_process.

[2] “Homology And Homoyopy in Geographic Systems”, Scientific
editors: A. K. Cherkashin, E.A. Istomina. Novosibirsk Academic
Publishing House “GEO”, Novosibirsk, Russia, 2009, 351 p. (in
Russian)

[3] D. A. Marca, C. L. McGowan. “SADT: structured analysis and
design technique”. McGraw-Hill Book Co., Inc.: New York, NY.
1988. 392 p.

[4] D. S. Frankel. “Model Driven Architecture: Applying MDA to
Enterprise Computing” . Wiley Publishing, USA, 331 p.

[5] “Formal methods - Wikipedia, the free encyclopedia”, access date
– 03-aug-2011, http://en.wikipedia.org/wiki/Formal_methods

[6] E. A. Cherkashin, S. A. Ipatov. “Logical Approach to UML-model
processing of Informational Systems” J. Conterporary
Techologies. System Analysis. Modelling. 2009. N 3 (23). pp. 91–
97. (in Russian)

[7] K. R. Edward, “Leo’s User Guide“, access date – 03-aug-2011,
http://webpages.charter.net/edreamleo/leo_toc.html

[8] I.V. Zakharova, A.V. Melnikov, J.A. Vokhmitsev “An approach to
automated ontology building in text analysis problems”.
Workshop on computer Science and Information Technologies
CSIT'2006, Karlsruhe, Germany, 2006. P.177-178.

[9] Jon Loeliger. “Version Control with Git: Powerful Tools and
Techniques for Collaborative Software Development”. O’Reilly
Media Inc., USA, 2009. 313 p.

